Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(2)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37366812

RESUMO

Tilapia (Oreochromis niloticus) is a widely cultivated fish in tropical and subtropical regions such as the Philippines, generating substantial waste during processing, including bones that are a valuable source of extracellular matrix (ECM). However, the extraction of ECM from fish bones requires an essential step of demineralization. This study aimed to assess the efficiency of tilapia bone demineralization using 0.5 N HCl at different time durations. By evaluating the residual calcium concentration, reaction kinetics, protein content, and extracellular matrix (ECM) integrity through histological analysis, composition assessment, and thermal analysis, the effectiveness of the process was determined. Results revealed that after 1 h of demineralization, the calcium and protein contents were 1.10 ± 0.12% and 88.7 ± 0.58 µg/mL, respectively. The study found that after 6 h, the calcium content was almost completely removed, but the protein content was only 51.7 ± 1.52 µg/mL compared to 109.0 ± 1.0 µg/mL in native bone tissue. Additionally, the demineralization reaction followed second-order kinetics with an R2 value of 0.9964. Histological analysis using H&E staining revealed a gradual disappearance of the basophilic components and the emergence of lacunae, which can be attributed to decellularization and mineral content removal, respectively. As a result, organic components such as collagen remained in the bone samples. ATR-FTIR analysis showed that all demineralized bone samples retained collagen type I markers, including amide I, II, and III, amides A and B, and symmetric and antisymmetric CH2 bands. These findings provide a route for developing an effective demineralization protocol to extract high-quality ECM from fish bones, which could have important nutraceutical and biomedical applications.

2.
Biomimetics (Basel) ; 7(4)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36546913

RESUMO

Milkfish (Chanos chanos) is an abundant fish commodity in the Philippines that generates a large number of wastes such as skin, scales, viscera, and bones, which, upon disposal, cause environmental pollution. The abundance of these wastes, such as fish skin, rich in bioactive natural products such as collagen, elicits interest in their conversion into high-market-value products. The decellularization of milkfish skin waste can extract its extracellular matrix (ECM), a potential raw material for biomedical applications such as the repair of damaged skin tissues. In particular, this study characterized the developed decellularized ECM with different concentrations (0.1%, 1.0%) of the decellularizing agents (Triton X-100, SDS) and temperature (4 °C, room temperature) using milkfish skin. The decellularized ECM structure was better preserved using Triton X-100, while SDS was more effective in cell component removal, especially at 1% concentration and 4 °C temperature. There were significant effects of varying the temperatures and concentrations on the physical and mechanical properties of the decellularized ECM. Future studies could explore more variables to further establish protocols and more analyses to better characterize the decellularized milkfish skin.

3.
Regen Ther ; 15: 173-179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33426216

RESUMO

INTRODUCTION: Cells have various applications in biomedical research. Cryopreservation is a cell-preservation technique that provides cells for such applications. After cryopreservation, sensitive cells, such as primary hepatocytes, suffer from low viability due to the physical damage caused by ice crystals, highlighting the need for better methods of cryopreservation to improve cell viability. Given the importance of effectively suppressing ice crystal formation to protect cellular structure, trehalose has attracted attention as cryoprotectant based on its ability to inhibit ice crystal formation; however, trehalose induces osmotic stress. Therefore, to establish a cell-cryopreservation technique, it is necessary to provide an optimal balance between the protective and damaging effects of trehalose. METHODS: In this study, we evaluated the effects of osmotic stress and ice crystal formation on the viability and function of primary rat hepatocytes at wide range of trehalose concentration. RESULTS: There was no osmotic stress at very low concentrations (2.6 µM) of trehalose, and 2.6 µM trehalose drives the formation of finer ice crystals, which are less damaging to the cell membrane. Furthermore, we found that the number of viable hepatocytes after cryopreservation were 70% higher under the 2.6 µM trehalose-supplemented conditions than under the dimethyl sulfoxide-supplemented conditions. Moreover, non-cryopreserved cells and cells cryopreserved with trehalose showed comparable intracellular dehydrogenase activity. CONCLUSIONS: We showed that trehalose at very low concentrations (2.6 µM) improved dramatically viability and liver function of hepatocyte after cryopreservation.

4.
Regen Ther ; 11: 258-268, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31667205

RESUMO

The extracellular matrix (ECM) in a liver-specific extracellular matrix (L-ECM) scaffold facilitates hepatocyte viability and maintains hepatocyte functions in vitro. However, whether an intact composition of ECM is required for an efficient ECM-based substrate design remains to be clarified. In this study, two L-ECM hydrogels, namely L-ECM I and L-ECM II, were prepared by pepsin solubilization at 4 °C and 25 °C, respectively. The solubility at 4 °C was 50% whereas that at 25 °C was 95%, thus indicating well-preserved L-ECM. Analysis confirmed higher ECM protein components (especially collagen) in L-ECM II, along with denser fiber network and larger fiber diameter. L-ECM II gel exhibited high compression strength and suitable viscoelastic properties. Furthermore, hepatocytes in L-ECM II showed higher expression of liver-specific functions in 3D culture and wider spread while maintaining the cell-cell contacts in 2D culture. Therefore, an intact L-ECM is important to realize effective substrates for liver tissue engineering.

5.
J Artif Organs ; 22(3): 222-229, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31076904

RESUMO

In recent years, studies on liver graft construction using the decellularized liver as a template for transplantation therapy have attracted much attention. However, the therapeutic effect of constructed liver grafts in hepatic failure has not been evaluated. Therefore, we aimed to develop a novel evaluation system demonstrating the curative effect of a constructed liver graft in animals with hepatic failure. First, we developed a highly reproducible rat model of hepatic failure by combining 80% partial hepatectomy with warm ischemia. In this model, severity could be controlled by the warm ischemic period. We also constructed a liver graft by recellularization of decellularized liver, and confirmed the ammonia metabolic function in the graft in vitro as one of the most important functions for recovery from hepatic failure. The graft was then applied to our developed hepatic failure rat model using a blood extracorporeal circulation system. In this application, the graft metabolized the ammonia in the blood of animals with hepatic failure and was thus suggested to be effective for the treatment of hepatic failure. In summary, a novel evaluation system for whole-organ-engineered liver graft as a preliminary stage of transplantation was developed. This system was expected to provide much information about the curative effect of a constructed liver graft.


Assuntos
Hepatectomia , Falência Hepática/cirurgia , Transplante de Fígado/métodos , Fígado/cirurgia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Engenharia Tecidual
6.
J Funct Biomater ; 10(2)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052349

RESUMO

Accurate determination of the amount of glycosaminoglycans (GAGs) in a complex mixture of extracellular matrix (ECM) is important for tissue morphogenesis and homeostasis. The aim of the present study was to investigate an accurate, simple and sensitive alcian blue (AB) method for quantifying heparin in biological samples. A method for analyzing heparin was developed and parameters such as volume, precipitation time, solvent component, and solubility time were evaluated. The AB dye and heparin samples were allowed to react at 4 ℃ for 24 h. The heparin-AB complex was dissolved in 25 N NaOH and 2-Aminoethanol (1:24 v/v). The optical density of the solution was analyzed by UV-Vis spectrometry at 620 nm. The modified AB method was validated in accordance with U.S. Food and Drug Administration guidelines. The limit of detection was found to be 2.95 µg/mL. Intraday and interday precision ranged between 2.14-4.83% and 3.16-7.02% (n = 9), respectively. Overall recovery for three concentration levels varied between 97 ± 3.5%, confirming good accuracy. In addition, this study has discovered the interdisciplinary nature of protein detection using the AB method. The basis for this investigation was that the fibrous protein inhibits heparin-AB complex whereas globular protein does not. Further, we measured the content of sulfated GAGs (sGAGs; expressed as heparin equivalent) in the ECM of decellularized porcine liver. In conclusion, the AB method may be used for the quantitative analysis of heparin in ECM scaffolds for tissue engineering applications.

7.
J Biosci Bioeng ; 128(3): 365-372, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30935781

RESUMO

A solubilized liver-specific extracellular matrix (L-ECM) substratum was obtained by decellularization of porcine liver using Triton X-100 and pepsin treatments. The L-ECM was able to immobilize hepatocyte growth factor at a high efficiency of 87%. L-ECM gelled spontaneously in a physiologically neutral environment. Primary hepatocytes embedded in the L-ECM gel showed a high albumin synthesis activity and ethoxyresorufin-O-deethylase (EROD) activity even at 3 weeks in culture. In addition, the L-ECM gel-embedded hepatocytes implanted subcutaneously into partial hepatectomized rats showed a high survival rate (18%) and formed a large liver tissue-like structure. Their efficiencies of EROD activity and large liver tissue-like structure formation were about twice those of collagen gel-embedded hepatocytes. Based on these results, we clarified the effectiveness of L-ECM gel as a substrate for hepatocyte culture and transplantation.


Assuntos
Matriz Extracelular/química , Hepatócitos/citologia , Hepatócitos/transplante , Hidrogéis/síntese química , Fígado/fisiologia , Alicerces Teciduais/química , Animais , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Transplante de Células/métodos , Células Cultivadas , Colágeno/química , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/fisiologia , Hepatócitos/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Fígado/citologia , Testes de Função Hepática , Masculino , Teste de Materiais , Especificidade de Órgãos , Ratos , Ratos Wistar , Suínos
8.
Gels ; 4(2)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30674815

RESUMO

The decellularization of organs has attracted attention as a new functional methodology for regenerative medicine based on tissue engineering. In previous work we developed an L-ECM (Extracellular Matrix) as a substrate-solubilized decellularized liver and demonstrated its effectiveness as a substrate for culturing and transplantation. Importantly, the physical properties of the substrate constitute important factors that control cell behavior. In this study, we aimed to quantify the physical properties of L-ECM and L-ECM gels. L-ECM was prepared as a liver-specific matrix substrate from solubilized decellularized porcine liver. In comparison to type I collagen, L-ECM yielded a lower elasticity and exhibited an abrupt decrease in its elastic modulus at 37 °C. Its elastic modulus increased at increased temperatures, and the storage elastic modulus value never fell below the loss modulus value. An increase in the gel concentration of L-ECM resulted in a decrease in the biodegradation rate and in an increase in mechanical strength. The reported properties of L-ECM gel (10 mg/mL) were equivalent to those of collagen gel (3 mg/mL), which is commonly used in regenerative medicine and gel cultures. Based on reported findings, the physical properties of the novel functional substrate for culturing and regenerative medicine L-ECM were quantified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...